
NASA / CR--2000-209939

-0
Dynamic Load Balancing for Distributed

Heterogeneous Computing of Parallel
CFD Problems

A. Ecer, Y.P. Chien, J.D. Chen, T. Boenisch, and H.U. Akay

Purdue School of Engineering and Technology, Indiana _olis, Indiana

March 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.
The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results
are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations
of significant scientific and technical data and

information deemed to be of continuing
reference value. NASA's counterpart of peer-

reviewed formal professional papers but
has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include
creating custom thesauri, building customized

data bases, organizing and publishing research
results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http:][www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA / C Rm2000-209939

Dynamic Load-Balancing for Distributed

Heterogeneous Computing of Parallel
CFD Problems

A. Ecer, Y.P. Chien, J.D. Chen, T. Boenisch, and H.U. Akay

Purdue School of Engineering and Technology, Indianapolis, Indiana

Prepared for the

Computational Aerosciences Workshop

sponsored by the High Performance Computing and Communications Program

Moffett Field, California, February 15-17, 2000

Prepared under Contract NAS3-2260

National Aeronautics and

Space Administration

Glenn Research Center

March 2000

Acknowledgments

The authors would like to express their appreciation to management of the High Performance Computing and

Communications Program and to the NASA R&T Base Program for supporting NPSS.

This report contains preliminary

findings, subject to revision as

analysis proceeds.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Price Code: A03

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A03

DYNAMIC LOAD-BALANCING FOR

DISTRIBUTED HETEROGENEOUS COMPUTING OF PARALLEL CFD PROBLEMS

A. Ecer, Y. P. Chien, J. D. Chen, T. Boenisch and H.U. Akay

Purdue School of Engineering and Technology
723 W. Michigan St.

Indianapolis, Indiana 46202
(317)-274-9712

ecer@engr.iupui.edu

1. INTRODUCTION

Parallel processing is widely used for solving computation intensive problems. Parallel
algorithms have been implemented on parallel supercomputers, networked
workstations, and combinations of workstations and supercomputers. One common

approach in solving large CFD problems is to utilize block-structured solution schemes.
The original domain is divided into a series of blocks. The parallel code then distributes
the blocks among a set of networked computers. While each computer processor is
responsible for solving one block of data it has to communicate with others during the
execution of the parallel code. One can define the parallel code in terms of a series of
block and interface solvers (Akay, 1993). While the block solver is for computing the
solution for a block, the interface solver is for exchanging information between block
boundaries. The execution time of each process is affected by several time-varying

factors, e.g., the load of computers, the load of the network, the solution scheme used
for solving each block, and sizes of blocks. Therefore, some processes may finish
much earlier than other processes and wait for information from other processes. Such

waiting significantly increases the program execution time and decreases the efficiency
of the system. Dynamic load balancing (DLB) is a tool to propedy distribute the
processes among computers to ensure the communication time and the waiting time
are minimized (Chien, 1994). To increase the efficiency and speed of parallel
computation, the computation load should be distributed to computers in such a way
that the elapsed execution time of the slowest computer is minimized. DLB is essential
for efficient use of complex and dynamic parallel and distributed computing resources.

Parallel algorithms allow the utilization of multiple computers for a single job. The
speed of a parallel algorithm is measured in terms of number of processors which can
be accessed without loosing parallel efficiency. The main objective of the present effort
is to run parallel codes on all available computer resources at any given time. This
includes clusters of parallel supercomputers and networked workstations
communicating through complex networks. The specific problem is to distribute the

parallel job to available processors in a most efficient way. It is assumed that available
computers are heterogeneous: operating under UNIX and NT operating systems.
There are several clusters or computers connected to each other with different

networks and scheduled by different system managers: LSF, PBS, Load Leveler.
Multi-user environment is considered: there are several parallel jobs running on the
system. When the computers by different owners need to be accessed and many
parallel jobs need to be executed, the efficient utilization of resources becomes a difficult

task. The DLB scheme is developed for improving the efficiency of parallel computing
in such an environment. More important, the load-balancing task is defined as a

responsibility of the owner of the application program rather than the system manager.
As mentioned above, block-structured solution schemes are supported. It is assumed
that the problem is divided into a number of blocks which is greater than the number of
available processors. The division of the grid is performed only once. Either greedy or
genetic algorithms are utilized for calculating the distribution of the number of blocks
among available processors.

Previously reported load balancing techniques commonly assumes that there is only one
parallel job running on a given set of computers. This assumption is valid when the same
owner owns all the computers for parallel processing and the owner can dedicate a setof
computers for a particular parallel process, whe-n-rfia-fi_, owners own_the compu{em and
many parallel jobs need to be executed on these computers, the reservation of dedicated

time for a parallel process becomes difficult, in a multi-user environment, multiple
parallel jobs may be executed concurrently on the same set of computers. One
unsolved problem in parallel processing is how to distribute multiple mutually dependent
parallel jobs among computing resources to achieve optimal computation speed for
each parallel job. When the mutually dependent load is not balanced, computers that
finish the computation early need to wait the other computers periodically in order to
collect essential information to proceed further, thus loosing their share of computing
resources and not achieving the best computation speed. When load balancers for
single parallel jobs are used together, conflicts of interests makes them to interfere with
each other. In this paper, we introduce a new load balancing method which addresses
multiple parallel jobs. The objective is to ensure that every parallel job, as well as the
entire system is load balanced.

2. BASIC DLB PROCEDURE

The basic assumptions of DLB are as follows:

• There are large numbers of computers available in different locations, which are
managed by different owners.

• At the initiation of the run a set of available computers is defined by the user. The
user can access all or any subset of these computers.

Each of the multi-user computers is operating under Unix or Windows NT.

The parallel application software is running MPI or PVM as shown in figure 1.
it is assumed that the job will take several hours, possibly all evening.

A load balancing cycle is defined, e.g., 20-40 minutes, which is larger than the time
required to move the jobs around.

2

Parallel CFD

Application

Message Passing Tools
(PVM or MPI)

DLB Tools

Operating System

(UNIX and Windows NT)

Networked Heterogeneous Computers

Figure 1. DLB Environment

The dynamic load balancing capability includes the following:

• Software assigned to each computer to measure computer and network speed.
• A load-balancing tool assigned to each parallel job to optimize the load distribution.
A master coordinator is not needed while each cluster or computer may be running under

a different job scheduler. The basic procedure, which is shown in figure 2, can be
summarized as follows:

Measure and Estimate Computation Cost Parameters During a DLB Cycle:

1) The speed of the computer,
2) The computation cost of each process on a given computer; and,
3) The total number of active processes on that computer.

Measure and Estimate Communication Cost Parameters During a DLB Cycle:

1) The speed of the network; and,
2) The communication cost of sending each message on a given network.

The unit of cost is defined as elapsed time. A cost function is defined as the elapsed time

to complete the slowest process. This cost functions is then minimized at the end of each
cycle to calculate the optimal load distribution for a given job. The jobs are re-distributed
and the process is repeated. The procedure allows for abandoning busy processors and
utilizing additional processors when they are available. Different optimization algorithms
can be utilized to minimize the cost function: Greedy, Genetic and mixed Genetic-Greedy

algorithms have been implemented.
t

3

°,8rMonitor

A1

RSp_wn

Killit
I

I Start

RCopy / . , ,_'

Balancing

A3
New Block

Balance Distribution

r b c_oI
Initial Block-_ Applications

Distribution _j • A41 J
/

Timing Result

•Communication Cost

I I
Simultaneously Simultaneously
Start/Stop with Start/Stop with
CFD CFD

Application Application

Communication I

Speed J

Measurement _-_

A51 J

c,;.o./

Extraneous Load

I

Count the J

Average I
Number of Non- L.

CFD processes J]

4_ A61 I

'"?_ /

Figure 2. DLB Procedure

3. DLB TOOLS

The DLB package provides several tools.

Stamp Library: The stamp library is a collection of functions which can be called by C or
FORTRAN programs. They can be embedded into CFD programs, and they gather the
timing information related to both the CFD program and the computer network.

Ctrack: in order to estimate the elapsed execution time for the CFD blocks, information
about the communication speed between all computers is needed. The CTrack-
Communication Tracker program supports communication speed measurement.

Ptrack: Both UNIX and NT are multi-user and multi-tasking Operating Systems (OS).
CPU time is shared by all concurrently running processes. The number of parallel CFD
processes running on each machine is defined and Ptrack (process tracker program)
finds the average number of processes belonging to other users, (extraneous load).

4

Balance: This is designed for load balancing. Balance predicts the computation and

communication costs of any given load distribution. It finds a time optimal load

distribution for the next execution cycle.

DLB Monitor: This tool initializes the computation and communication cost model while

running the application program simultaneously with Ptrack and Ctrack. It gathers the
time stamp and PtracldCtrack results from all parallel computers for load balancing.

RCopy & Rspawn: Rcopy copies files from/to remote NT and Unix based computers
using message-passing libraries which are necessary for gathering data for load

balancing. Rspawn executes system commands (or applications) on remote NT and Unix

based computers.

Others: Several UNIX tools useful for DLB, for example, ps, killit and cat were developed
for Windows NT.

4. DLB EXAMPLES

Two test cases are presented to illustrate the basic concept of DLB. Both cases include
64 blocks.

In the first case the following processors were available:

6 Processors of the IBM RS/6000 Cluster, CFD Lab, IUPUI, Indianapolis

(iwl-iw6);
10 Processors of the Windows NT PC-Cluster, CFD Lab, IUPUl, Indianapolis

(ipl-ip7, ip9-ip13); and
8 Processors (Thin node 2SC)of the IBM SP, IU, Bloomington, Indiana

(bl -b8).
One processor of the IBM RS/6000 Cluster computing the application is approximately

10% faster than the nodes bl to b5 in Bloomington, 30 - 40% faster than nodes b6 to b8

in Bloomington and nine times faster than one of the PC's since the application was

compiled without optimization. Initial distribution involved 3 blocks on each processor at
the PC-Cluster and at the SP in Bloomington, I or 2 blocks at the RS/6000s of the CFD

Lab as shown in figure 3. The balanced distribution is also shown. Elapsed time for the
run was reduced 1379 seconds to 371 seconds.

The second case involved the following processors:

6 Processors of the IBM RS/6000 Cluster, CFD Lab, IUPUI, Indianapolis, Indiana,

(iwl-iw6);

8 Processors (Thin node 2SC)of the IBM SP, lU, Bloomington, Indiana

(bl - b8);
8 Processors (Thin node 2) of the iBM SP, RUS, Stuttgart, Germany

(sl - s8); and

10 Processors of the Windows NT PC-Cluster, CFD Lab, IUPUI, Indianapolis,

(ipl, ip4-ip7, ip9-ip13).

5

One processor of the IBM RS/6000 Cluster IUPUI, computing the application is nearly 4
times faster than the SP nodes in Stuttgart. Initial distribution and the distribution after the
DLB is shown in figure 4. The elapsed time for this case is reduced from 1271seconds to
345 seconds.

I
I
l
I
I

II

Hi
lllllll I

l Illlllllllllllllll
llllllllillllllllllll

illlllilllllllllllllllll
IW2 lWl tw3 _ IwS _ bl b2 b3 54 _ bG ll? btl i!ll 1I'4 _ itli Ip? IpSl Itlfl lpll i112 lilt]

Figure 3a. DLB Test Case 1" Original Distribution

I
I
_I_IIiI I

" IIII
lIll_IIIIIIIII_
_III" _IlIIllIII
Illlll!iII!Ill

lw'l 1_3 ll,14 _ ,lli'll bl [I2 b3 54 b5 b& b? bib lilt Ip,4 |p5 tp6 Ip? Ip_l IplO Ipll Ip12 Ipli

Figure 3b. DLB Test Case 1" Load Balanced Distribution

I
I I
I IIIIIIIIIIIIIII,,,,,,,,,,llllilll

!i111111111111111111111111111111
Iw2 IWl lilr3 ll,_ I*,*rS lwil bl b2 b3 b4 55 Ill; b? 58 ll i _l Ii lill IS II S? I ill Ill Ipll lp5 IpG lp? IpS IplO Ipll Ipll2 Ip'13

Figure 4. DLB Test Case 2: Original Distribution

6

I

III_ ° _

c_

I
in

.......... _e_

II -,_,_,I,_,_,I_ I I I I,_,II I I I I I U
lw2 hvl _3 I_ _ lw$ bt b2 b3 b4 b5 I_ b7 bO sl s2 s3 _ s_ _,S $7 _I lpl Ip,4 ip5 Ipii; IpT' Ip9 IplO Ipll tpl2 Ip13

Figure 4b. DLB Test Case 2: Load Balanced Distribution

5. MULTI_USER DLB

5.1. Problem description
The following assumptions are used for the development of load balancing tools for
multiple parallel jobs:
1) Every user can use all available hosts (computers).
2) A DLB Monitor is associated with each parallel job. The DLB monitor is responsible

for the load balancing of that particular parallel job.

3) A DLB Monitor can request information about computation load and communication
speed of any computer.

4) A DLB Monitor only has the detailed knowledge of its own application. It only knows
the number of processes generated by the other users on each host (extraneous
loads). It does not have the details of the parallelism for these jobs.

5) The DLB Monitor may request information from any number of hosts for the parallel
jobs. However, the DLB monitor determines the optimal number of hosts to be used
for the parallel job.

6) Each DLB Monitor suggests a new load distribution to the computers for the parallel
job.

The task of the load balancer for multiple parallel jobs is to ensure that the DLB monitors
do not interfere with each other. In other words, load distribution suggested by a DLB
monitor should not affect the balance of other currently executing parallel jobs.

5.2. Dynamic load balancing for multiple parallel jobs

In a multi-user environment, multiple parallel jobs may be executed concurrently on the
same set of computers. Therefore, different DLB monitors may have conflicting
interests. In order to resolve the conflict, a higher level manager may be needed. In
the proposed approach, distributed DLB monitors for each application resolve conflicts
without the aid of a higher level manager.

7

5.2.1 The organization of the software tools

The organization of the software tool, shown in figure 5, is as follows:

, I] , ,
I l ,
, , ,

Io_o_u_..............4_,ou__................1_,o_uI
, 1

, !
I !
I I

] Globu _.............. 4 Gl°bu -_ 4 Gl°bu I
1 1 1
' , I

Parallel Job Parallel Job Parallel Job

Figure 5. Organization of Software Tools for Load Balancing of Multiple Parallel Jobs

1) A DLB monitor is associated with each parallel job.

2) One coordinator demon is running on every host. Each coordinator can manage
multiple DLB monitors. The duty of the coordinator is to support the DLB monitors
that run on the same host. The coordinator helps the DLB monitors on the host to
send messages to and receive messages from the coordinators on other hosts.

3) One system monitor is running on each computer to gather local computer and
network speed information.

8

4) The coordinator communicates with the system monitor to obtain the local system
information.

5) Each DLB monitor requests information of computation load and communication
speed of any available hosts through coordinators.

6) The tools are able to support different optimization methods for load balancing.
7) Load balancing is performed in a distributed manner. There is no need for a higher

level manager. This requirement is essential since hundreds or more hosts from
different organizations may be used for parallel computing by a variety of
applications. The breakdown of any host should not affect the load balancing ability
of other hosts. As indicated in the figure, access to different hosts can be achieved
through Globus.

5.2.2 The load-balancing algorithm

The organization of the software tools supports the efficient exchange of information
between DLB monitors. There are several possible approaches to use the shared
information for load balancing. In this paper, we discuss the round robin load-balancing
algorithm. In round robin load balancing, each parallel job can stop its execution and
request load balancing at any time. However, the system only allows one parallel job to
perform a load balance at any particular time. Load balancing for multiple parallel jobs
is then performed in sequence.

The basic idea for this approach is as follows: It is assumed that the computers are
multiple-user and multiple-process computers, for example operating under Windows
NT and/or Unix. It is also assumed that the application processes on each computer
have the same execution priority. Therefore, the CPU power of a computer is equally
divided among all application processes executing on that computer. In a multiple-
processing environment, if one process does not fully use the given time slice, then the
CPU power will be shared by the other processes on that computer. The responsibility
of the load balancing coordinator is to monitor the computer load, the network load, and
communicate with all parallel processes executing on the computer. To prevent any
conflict of interest, only one DLB monitor is allowed to load balance at each time
instance. For this purpose, all the computer hosts participating in the parallel
computing form a token ring. A token is passed among the hosts. Only the DLB
monitor on the host that has the token is allowed to perform load balancing. If there are
more than one DLB monitors on a host, the coordinator allows the DLB monitors to

perform load balancing one after another.

6. CONCLUSIONS

This paper studies an optimization algorithm for the load balancing of multiple parallel
processes belonging to different users, competing for the same resources. It is assumed
that (1) a parallel process does not have detailed knowledge of other parallel
processes, (2) each parallel process has its own Ioad-balancer, and (3) each parallel
process can share its load distribution on any computer with other parallel processes

9

that use the same computer. There is a load balancing coordinator on each computer
for sharing information between the users. It monitors the computer load, the network
load, and communicates with all parallel processes executing on that computer. Under
such conditions, a DLB monitor can load balance a specific parallel application without
the aid of a higher level manager.

7. ACKNOWLEDGEMENTS

The authors would like to express their appreciation to management of the High

Performance Computing and Communications Program and to the NASA R&T Base
Program for supporting NPSS.

8. REFERENCES

1.Akay, H.U., Blech, R., Ecer, A., Ercoskun, D., Kemle, B, Quealy, A. and Williams,
A., A Database Management System for Parallel Processing of CFD Algorithms,
Parallel Computational Fluid Dynamics '92, Ed. By R.B. Pelz, et. al., Elsevier Science
Publishers.

2. Chien, Y.P., Ecer, A., Akay, H.U., Carpenter, F. and Blech, R.A., Dynamic Load
Balancing on a Network of Workstations for Solving Computational Fluid Dynamics
Problems, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 17-
33.

10

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2000 Final Contractor Report

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Dynamic Load-Balancing for Distributed Heterogeneous Computing

of Parallel CFD Problems

6. AUTHOR(S)

A. Ecer, Y.R Chien, J.D. Chen, T. Boenisch, and H.U. Akay

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Purdue School of Engineering and Technology

723 W. Michigan Street

Indianapolis, Indiana 46202

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

WU-509-10-24-00

NAS3-2260

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-12187

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR--2000-209939

11. SUPPLEMENTARY NOTES

Prepared for the Computational Aerosciences Workshop sponsored by the High Performance Computing and Commu-

nications Program, Moffett Field, California, February 15-17, 2000. Project Manager, Isaac Lopez, Aeronautics

Directorate, organization code 2900, (216) 433-5893.

rw

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 01 and 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel,

distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub-

domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined

as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In

environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network

speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing

software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation

environment and algorithms. These tools are dynamic in nature because of the changes in the computer environment

during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the

probIems associated with this application will be discussed. Also, the developed algorithms were combined with the load

sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be pre-

sented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.

14. SUBJECT TERMS

Parallel CFD; Load balancing; Distributed computing

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY C_LASSIRCATION
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

15. NUMBER OF PAGES

15
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

